Opcn OP t1_j11el0t wrote
Reply to comment by kslusherplantman in World's first rice seeds harvested in orbit onboard China Space Station return to Earth by Opcn
> Oh, so you eat the whole plant?
>Or are you just eating the “seeds” and leaving the rest of the plant?
>You do realize there is more plant left behind the when you harvest rice?
>Oh, that’s right, you are only eating a tiny section of the plant itself………..
" let's say 2 to 1 crop residue to yield (which is an overestimate but that more than makes up for the fact that a tiny percentage is going to be oils which take more water for a kilo of product) so that's 100 liters in the soil, 3.6 liters in dry matter"
>Yes you are ignoring the whole weight of the plant that is still carbohydrates, but we can’t digest.
>Or can you, amongst all humans, break down cellulose??? Oh you can’t…. Cool cool cool cool
"The crop residues are composted releasing the water, the food is eaten, releasing the water."
[deleted] t1_j11fy65 wrote
[removed]
Opcn OP t1_j11gter wrote
Composting the residues and eating the yields uses exactly as much oxygen as growing releases. And it releases exactly as much H20 and CO2 as growing consumed.
I'm not an idiot, and I've looked into this extensively. Stop treating me so poorly. Did you not notice that your last two abusive responses were over how I missed something that I clearly addressed in a previous comment?
kslusherplantman t1_j11i0t4 wrote
In a perfect system, yes. Which also doesn’t exist
But you already admitted their capture of vaporous water wasn’t 100%
And composting would also not be 100% efficient either.
Willfully obtuse…
And this is so odd, considering you agree with me that growing them in space isn’t feasible…
Opcn OP t1_j11n3wg wrote
It's functionally 100%. It's not perfect, because every system leaks, but we are talking 2.5 milliliters per day loss from the ISS as unrecovered humidity.
Composting wouldn't be 100% efficient, but you go through 10-20 crop cycles and the amount of hydrogen locked into the recalcitrant residues is going to be measured in milligrams per kilogram of crop yield.
You keep declaring me stupid but NASA, ESA, CSA, ISRO, and CNSA are all still looking at this process and they absolutely aren't treating it as forgone stupid conclusion like you are. There are a lot of really brilliant and really well educated people who are looking really carefully at this, and building test systems on earth and in space.
What's the better explanation? That extremely well educated people from many different academic and industrial disciplines are all failing to notice the very basic considerations that you would expect an elementary school class to think of in a guided exercise, or that you haven't thought it through?
kslusherplantman t1_j149dns wrote
So what’s a 1% loss on 1500 gallons per system? Per kg… so even 2% loss of 1500 gallons per kg.
60 gallon x 8 lbs per gallon.
Remember 1500 is per kg WITHOUT FLOODING.
1 kg of rice feeds 6-8 people ONE TIME.
So that would feed the space station for two days, and you still have to add additional nutrients.
So let’s say they only eat a half portion per day.
That 1 kg of rice doesn’t even last a week…
Yeah, they aren’t going to be growing it for consumption for a while. Why?
It’s cheaper to move the bloody dry rice than the water for the rice….
It’s all good, you still agreed LONG ago in this thread it’s not going to happen for a while.
Again I’m just being practical on the matter.
Now, do I say it won’t ever happen. Nope…
I said as of now it’s not feasible, especially considering it’s cheaper and more effective to take a kg of rice to space, than to take the water to make the rice.
I notice you aren’t offering any math to the solution, so I’ll put it this way.
I’m being pragmatic about the situation, you just seem to want it to be a reality even if the logic of the situation deems otherwise.
Do we need to be able to do it? Yes
Are we there yet, and still a while in the future? absolutely
Viewing a single comment thread. View all comments